Carbon Reporting with the Forest Vegetation Simulator (FVS)

Coeli M. Hoover

US Forest Service, Northern Research Station

Providing Environmental Services from Agriculture in a Budget-Constrained Environment

April 17, 2012, Washington, DC

Introductions

- Ecosystem ecologist
- Have been working on forests and carbon since 1999
- Work at the stand and landscape scales
- Interested in management effects
- Outreach and training

There's a lot to keep track of...

Biomass

Soils

Forest Carbon Sink

Forest Floor

Products

Woody debris

Carbon in Harvested Trees

- Some plans allow carbon in products to be counted if verifiable
- Categories:
 - Products in use
 - Products in landfills
 - Wood burned for energy
 - Emissions
- Challenging to track through time; changing markets and regional differences

What is the Forest Vegetation Simulator (FVS)?

Individual-tree growth and yield model

- Uses standard inventory data
- Generally run at the stand level
 - Not an ecological process model, not spatially explicit
- Can simulate nearly any type of management

More about FVS

- Widely used by forest managers, especially in the National Forest System
- National coverage "variants" developed for geographic regions
- Many extensions and post processors are available to look at more than timber:
 - Fire and fuels extension
 - Insect and disease extension
 - Wildlife habitat reports
 - Many more!

Geographic Variants

Each has its own set of species, growth and mortality functions, volume calculation procedures, etc.

What inputs does FVS need?

- Stand level data:
 - Slope, aspect, elevation, information related to the inventory method, site index, etc.
- Tree level data:
 - Species, diameter, tree history, height, etc.
- There are many tree and stand level variables that may be entered. FVS will supply regional defaults for most variables.

What kinds of output can I get?

- The FVS base reports provide information on the stand: trees per acre, basal area, volume, average stand diameter, etc.
- Other reports can be generated: the stand carbon report, the harvested carbon report, fuels reports, disease risk
- Reports are saved as a text file, but can be written to Excel files, or used to generate "pictures" of the stand.

More on inputs and outputs

- You MUST have a treelist to use FVS!
- Many types of output and reports are available
- Check the FVS documentation for details on model inputs and outputs

Simulating management actions

FVS can simulate nearly any management action:

- Thinning
- Prescribed fire
- Harvesting: single tree selection, group selection, shelterwood, clearcut
- Planting/regeneration
- Slash management

More on management

- Management actions are not "canned"
- For example, once a thinning is selected, many options are possible:
 - Thin from above, below, within all or part of a diameter range, to a specified basal area or density target, with or without species preferences, at a set time or when a specific condition is reached, and more.
- Except for a few variants, regeneration is not automatic: you must tell FVS when and how to add new seedlings

Example

Example

Caveats

- •FVS is a large, flexible, complex model. It will simulate nearly any management action. It will NOT check to see if the settings chosen "make sense."
- The user must be able to interpret the output to see if the simulation worked as intended.
- •For most realistic projections, defaults should be modified to reflect local conditions.

In short....

- If you are new to FVS, taking the one week training course offered by the FVS staff is strongly recommended
- Trainings are held throughout the US
- A forestry or natural resources background is helpful in interpreting the basic stand reports
- For more: http://www.fs.fed.us/fmsc/fvs/

Carbon Reporting Basics

- Reports are located in the Fire and Fuels Extension (FFE) to FVS
- Live aboveground biomass 2 methods
 - Jenkins et al. (For. Sci. 2003)
 - FFE default method
- · Live and dead roots from Jenkins et al.
- Forest floor, down dead wood, and snag pools by FFE default methods
- Harvested carbon from Smith and Heath (2006) - 1605b method

What is the Fire and Fuels Extension (FFE)?

- An "add-on" to FVS that tracks fire hazard, fuel loading, snag mass, and related variables over time
- FFE combines vegetation predictions of FVS with:
 - Estimates of fuel accumulation and decay
 - Estimates of snag fall down and decay
 - Fire behavior models

Why are the Carbon Reports in the FFE?

- The FFE uses information from FVS to track various kinds of fuel
- These fuels represent many of the carbon pools that are commonly reported, such as dead wood and the forest floor
- So, the biomass pools needed were already modeled in the FFE - they just needed to be translated to carbon

What data do I need to use the carbon reports?

- The same that you need to run FVS.
 When you request the carbon reports,
 FVS passes the information to the FFE
- If you don't have dead wood and forest floor data, FVS will use regional defaults
- If you simulate a harvest, that information will be used to generated the harvested carbon report

CarbCalc Keyword

What outputs do I get?

STAND	ID: 2849		***	S	ON REPORT TAND CARBO MT ID: NO	ON REPORT		**			
	Aboveground Live		Belowground		Stand	Forest			Total Stand	Total Removed	Carbon Released
YEAR	Total	Merch	Live	Dead	Dead	DDW	Floor	Shb/Hrb	Carbon	Carbon	from Fire
	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA
 2006	114.4	75.2	21.4	12.5	0.0	18.1	14.9	0.7	182.1	48.5	0.0
2011	119.6	77.8	24.3	10.1	0.1	11.4	15.7	0.7	181.9	0.0	0.0
2016	123.2	80.4	23.5	9.1	1.2	10.2	16.2	0.7	184.1	0.0	0.0
2021	128.2	83.4	24.2	7.6	1.1	9.7	16.6	0.7	188.1	0.0	0.0
2026	132.7	85.8	25.0	6.5	1.6	10.2	17.1	0.7	193.7	0.0	0.0
2031	138.2	88.6	26.0	5.5	1.8	10.8	17.4	0.7	200.4	0.0	0.0

- All of the major pools EXCEPT soil carbon are reported, as well as merchantable live tree carbon
- Carbon removed from the stand, if harvest occurs
- Carbon released from fire, if fire is simulated
- Values are stocks tons C/ac or tonnes C/ha

What outputs won't I get?

- Soil carbon
 - Forest soil carbon has high spatial variability
 - Reliable default estimates are not available
 - Forest soil C does not respond in a uniform way to management actions
- Emissions from management: e.g. fuel use
 - FVS is a growth and yield model, not a lifecycle analysis or greenhouse gas model
- Information on other GHGs: N₂0, CH₄

Calculating Change

				The second second second		
		****** CARBON STAI				
STAND	ID: 2849			MGMT		
	Abovegrou	nd Live	Belowgro	ound		
YEAR	Total	Merch	Live	Dead		
				2 2 3 3 3		
	T/HA	T/HA	T/HA	T/HA		
2006	114.4	75.2	21.4	12.5		
2011	119.6	77.8	24.3	10.1		
2016	123.2	80.4	23.5	9.1		
2021	128.2	83.4	24.2	7.6		
2026	132.7	85.8	25.0	6.5		
2031	138.2	88.6	26.0	5.5		

- •Aboveground live biomass 2006 = 114.4 t/ha
- •Belowground live biomass 2006 = 21.4 t/ha
- •Total live biomass 2006 = 135.8 t/ha
- •Total live biomass in 2026 =

132.7 + 25.0 = 157.7 t/ha

So, projected <u>net</u> change in live carbon stocks from 2006-2026 is: 157.7 - 135.8 = 21.9 t/ha

Mean <u>annual</u> change = (157.7-135.8)/20 = 1.1 t/ha/yr

CarbCut Keyword

User specifies reporting duration and reporting interval

Sawtimber/pulp diameter breakpoint is set in CarbCalc dialog box

Example of Harvested C Report

			**			r version :		
STAND	ID: 2849	HARVESTED PRODUCTS REPORT MGMT ID: NONE						
					Merch (Carbon		
YEAR	Prducts	Lndfill	Energy	Emissns	Stored	Removed		
	T/HA	T/HA	T/HA	T/HA	T/HA	T/HA		
2006	25.6	0.0	9.4	6.4	25.6	41.4		
2011	18.2	3.9	11.3	8.1	22.1	41.4		
2016	13.7	6.1	12.5	9.1	19.8	41.4		
2021	10.9	7.4	13.2	9.9	18.4	41.4		
2026	9.1	8.2	13.7	10.4	17.3	41.4		
2031	7.9	8.7	14.1	10.8	16.6	41.4		

- Values are stocks user needs to compute change
- C allocation among pools changes over time
- Follows methods in GTR NE-343 (Smith et al.)

Things to remember

- Reports provide stocks at a point in time
 - User must calculate stock changes
- If harvests are simulated, add the stock value from the Stand Carbon Report to the stock value from the Harvested Carbon Report to get total
- To compute average annual change: divide the stock change for a time interval by the number of years

What about disturbances?

- Since FVS is a growth and yield model and not an ecological process model, disturbances are not explicitly included
- However, the effects of disturbances can be included
 - Wildfire can be simulated in the FFE
 - Other disturbances can be simulated by selecting a lower site index, using the insect and disease extensions, using different growth multipliers, or adjusting mortality rates

What about land use change?

- Under most circumstances, FVS requires a treelist in order run
- There is a "bare earth" option that can be used if converting from non-forest
 - Stand level data must be supplied
 - The regeneration keyword is then used
 - User supplies information on number, type, height, survival rate of seedlings
- · Remember, soil C is not included

More things to remember

- FVS was developed to model stand growth and yield, not carbon or ecosystem processes
- Does not include all C fluxes; tracks major C pools (excluding soil)
- Output units are in English or metric tons of carbon, not in CO₂
 - If CO₂ is needed, multiply by 3.67

For more information:

For more info on the FVS carbon reports:

GTR NRS-77:

http://www.nrs.fs.fed.us/

pubs/37449

On FVS:

http://www.fs.fed.us/fmsc

/fvs/

